The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution.
نویسندگان
چکیده
The rod component of the bacterial flagellum polymerizes from the inner membrane across the periplasmic space and stops at a length of 25 nm at the outer membrane. Bushing structures, the P- and L-rings, polymerize around the distal rod and form a pore in the outer membrane. The flagellar hook structure is then added to the distal rod growing outside the cell. Hook polymerization stops after the rod-hook structure reaches approximately 80 nm in length. This study describes mutants in the distal rod protein FlgG that fail to terminate rod growth. The mutant FlgG subunits continue to polymerize close to the length of the normal rod-hook structure of 80 nm. These filamentous rod structures have multiple P-rings and fail to form the L-ring pore at the outer membrane. The flagella grow within the periplasm similar to spirochete flagella. This provides a simple method to evolve intracellular flagella as in spirochetes. The mechanism that couples rod growth termination to the ring assembly and outer membrane penetration exemplifies the importance of stopping points in the construction of a complex macromolecular machine that facilitate efficient coupling to the next step in the assembly pathway.
منابع مشابه
Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi
A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...
متن کاملBreak on through to the other side: outer membrane penetration of the nascent flagellum by a stop-polymerization mechanism.
Bacterial cells are equipped with a myriad of organelles or complex protein assemblages that execute specialized functions required for cellular integrity and survival in the ever-changing environment. Of these organelles, the flagellum is renowned for its use as a model system to elucidate the intricate molecular mechanisms that direct and coordinate the precise subcellular placement and step-...
متن کاملOuter Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance
Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...
متن کاملThe shape and dynamics of the Leptospiraceae.
Most swimming bacteria produce thrust by rotating helical filaments called flagella. Typically, the flagella stick out into the external fluid environment; however, in the spirochetes, a unique group that includes some highly pathogenic species of bacteria, the flagella are internalized, being incased in the periplasmic space; i.e., between the outer membrane and the cell wall. This coupling be...
متن کاملRod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal.
In Salmonella, the rod substructure of the flagellum is a periplasmic driveshaft that couples the torque generated by the basal body motor to the extracellular hook and filament. The rod subunits self-assemble, spanning the periplasmic space and stopping at the outer membrane when a mature length of ~22 nm is reached. Assembly of the extracellular hook and filament follow rod completion. Hook i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2007